PROBLEM

Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and let m(b) be the minimum value of f(x). As b varies, the range of m(b) is (2001S) (a) [0,1] (b) (0,1/2] (c) [1/2,1] (d) (0,1]

SOLUTION

(d)
$$f(x) = (1 + b^2) x^2 + 2bx + 1$$

It is a quadratic expression with coeff. of
 $x^2 = 1 + b^2 > 0$.
 \therefore $f(x)$ represents an upward parabola whose min value is
 $\frac{-D}{4a}, D$ being the discreminant.
 \therefore $m(b) = -\frac{4b^2 - 4(1 + b^2)}{4(1 + b^2)} \implies m(b) = \frac{1}{1 + b^2}$
For range of m (b) :
 $\frac{1}{1 + b^2} > 0$ also $b^2 \ge 0 \implies 1 + b^2 \ge 1$
 $\implies \frac{1}{1 + b^2} \le 1$. Thus $m(b) = (0, 1]$